338 Chemical Equilibrium

Chemical Equilibrium

1.	One mole of SO_3 was placed in a litre reaction vessel at a certain temperature. The following equilibrium was established		8
	$2SO_3 = 2SO_2 + O_2$		
	At equilibrium 0.6 moles of SO_2 we equilibrium constant of the reaction will be	re formed. The [MP PMT 1991]	
	(a) 0.36 (b) 0.45		
	(c) 0.54 (d) 0.675		
2.	For the following homogeneous gas reaction	$4NH_3 + 5O_2 \rightleftharpoons$	-
	$4NO + 6H_2O$, the equilibrium constant K_c has the		
	dimension of [CPMT 1990; M	P PET/PMT 1998]	
	(a) $Conc^{+10}$ (b) $Conc^{+1}$		
	(c) $Conc^{-1}$ (d) It is dimensional dimensionada dimensionada dimensionada	nsionless	1
3.	Consider the imaginary equilibrium		
	$4A + 5B \rightleftharpoons 4X + 6Y$		
	The equilibrium constant K_c has the unit	[RPMT 2000]	
	(a) $Mole^2 litre^{-2}$ (b) Litre mole	e ⁻¹	
	(c) Mole $litre^{-1}$ (d) $Litre^2$ mol	e ⁻²	
4.	For the reaction $CO(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$, true		
	condition is		1
	(a) $K_p = K_c$ (b) $K_p > K_c$		-
	(c) $K_p < K_c$ (d) $K_c = 0$ b	out $K_p \neq 0$	
5.	For the reaction $CO(g) + \frac{1}{2}O_2(g) = CO_2(g); \frac{K_p}{K_c}$ is		
	•	998; AIEEE 2002]	
	(a) 1 (b) <i>RT</i>		
	(c) $\frac{1}{\sqrt{RT}}$ (d) $(RT)^{1/2}$		1
6.	$2N_2O_5 \rightarrow 4NO_2 + O_2$ what is the ratio (g) (g) (g) (g)	of the rate of	
	decomposition of N_2O_5 to rate of formation of	f NO ₂	1
		[DCE 2003]	-
	(a) $1:2$ (b) $2:1$		
	(c) $1:4$ (d) $4:1$ The reaction quotient (<i>Q</i>) for the reaction		
	$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$		
	is given by $Q = \frac{[NH_3]^2}{[N_2][H_2]^3}$. The reaction v	vill proceed from	1
	2 2	[CBSE PMT 2003]	
	(a) $Q = 0$ (b) $Q = K_c$		
	(c) $Q < K_c$ (d) $Q > K_c$		
	Where K_c is the equilibrium constant		

- 8. In the thermal dissociation of PCl_5 , the partial pressure in the gaseous equilibrium mixture is 1.0 atmosphere when half of PCl_5 is found to dissociate. The equilibrium constant of the reaction (K_p) in atmosphere is [JIPMER 2002]
 - (a) 0.25 (b) 0.50

FT Self Evaluation Test -8

- (c) 1.00 (d) 0.3
- 9. *HI* was heated in a closed tube at $440^{\circ}C$ till equilibrium is obtained. At this temperature 22% of *HI* was dissociated. The equilibrium constant for this dissociation will be
 - [MP PET 1988, 92; MNR 1987; UPSEAT 2000]
 - (a) 0.282 (b) 0.0796
 - (c) 0.0199 (d) 1.99 The following equilibrium exists in equation
- **10.** The following equilibrium exists in aqueous solution $CH_3COOH \Rightarrow CH_3COO^- + H^+$. If dilute *HCl* is added without a change in temperature, then the [MNR 1987]
 - (a) Concentration of CH_3COO^- will increase
 - (b) Concentration of CH_3COO^- will decrease
 - (c) Equilibrium constant will increase
 - (d) Equilibrium constant will decrease
- 11. Which of the following is not favourable for SO_3 formation
 - $2SO_2(g) + O_2(g) \Rightarrow 2SO_3(g); \Delta H = -45.0 \, kcal$

[IIT 1984; MP PET 1997]

- (a) High pressure
- (b) High temperature
- (c) Decreasing SO_3 concentration
- (d) Increasing reactant concentration
- 120 gm of urea are present in 5 litre solution, the active mass of urea is [MP PMT 1994]
 - (a) 0.2 (b) 0.06
 - (c) 0.4 (d) 0.08
- **13.** For the system $2A(g) + B(g) \Rightarrow 3C(g)$, the expression for equilibrium constant *K* is [NCERT 1973; DCE 1999]

a)
$$\frac{[2A] \times [B]}{[3C]}$$
(b)
$$\frac{[A]^2 \times [B]}{[C]^3}$$
c)
$$\frac{[3C]}{[2A] \times [B]}$$
(d)
$$\frac{[C]^3}{[A]^2 \times [B]}$$

14.If concentration of reactants is increased by 'x', then K becomes[AFMC 1997](a) $\ln (K/x)$ (b) K/x(c) K+x(d) K

Answers and Solutions

(SET -8)

🕀 www.studentbro.in

Get More Learning Materials Here :

1. (d)
$$2SO_3 \approx 2SO_2 + O_2$$

 $(1-0.6) \approx (0.6) \times (0.3)$
 $K_c = \frac{[SO_2]^2[O_2]}{[SO_3]} = \frac{0.6 \times 0.6 \times 0.3}{0.4 \times 0.4} = 0.675$.

2. (b) *K* has the units of (conc.)^{$$\Delta n$$}, where $\Delta n = 10 - 9 = +1$

3. (c) Unit of $K_c = (\text{unit of concentration})^{\Delta n}$ = $(mole \ litre^{-1})^{\Delta n}$

> $\Delta n = 10 - 9 = 1$ $\therefore K_c = mol \ Litre^{-1}.$

4. (c) When $n_r > n_p$ then $K_p < K_c$

where $n_r = \text{no. of moles of reactant}$

 $n_p =$ no. of moles of product.

5. (c) For
$$CO + \frac{1}{2}O_2 \rightleftharpoons CO_2$$

 $K_p = K_c (RT)^{1-1\frac{1}{2}} = K_c (RT)^{-\frac{1}{2}}; \quad \frac{K_p}{K_c} = \sqrt{\frac{1}{RT}}$

 $6. \qquad \text{(b)} \quad 2N_2O_5 \to HNO_2 + O_2$

Rate of decomposition of N_2O_5

$$= -\frac{1}{2} \cdot \frac{K[N_2O_5]}{dt}$$

Rate of formation of $NO_2 = \frac{1}{4} \cdot \frac{d[NO_2]}{dt}$

 \therefore Ratio = 2 : 1

7. (d) If $Q > K_c$ reaction will proceed right to left to decrease concentration of product.

At equilibrium 0.5 0.5 0.5 $K_{p} = \frac{Px^{2}}{(1-x^{2})} = \frac{1 \times 0.5 \times 0.5}{[1-(0.5)^{2}]} = \frac{0.5 \times 0.5}{0.75} = \frac{1}{3} = 0.3$ (c) $2HI \Rightarrow H_{2} + I_{2}$ Initial conc. 2 moles 0 0 at equilibrium $\frac{22}{100} \times 2$ 0.22 0.22 = 2 - 0.44 = 1.56 $K = \frac{[H_{2}][I_{2}]}{[HI]^{2}} = \frac{0.22 \times 0.22}{[1.56]^{2}} = 0.0199$.

- 10. (b) When adding HCl in CH_3COOH solution the concentration of H^+ is increased. So reaction is proceed in reverse direction and the concentration of CH_3COO^- is decreased.
- **11.** (b) The reaction is exothermic so high temperature will favour backward reaction.

12. (c) Active mass =
$$\frac{moles}{litre}$$

= $\frac{\text{wt.in } gm/\text{molecular } \text{wt.}}{V \text{ in } litre} = \frac{120/60}{5} = \frac{2}{5} = .4$
13. (d) $K = \frac{[C]^3}{[A]^2[B]}$.

14. (d) There is no effect of change in concentration on equilibrium constant.

🕀 www.studentbro.in

CLICK HERE

>>

9.

8. (d)
$$PCl_5 \approx PCl_3 + Cl_2$$

Initial conc. 1 0 0

Get More Learning Materials Here :